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Sensor Configuration and
Coordinate System Transformations

* “Coordinate Systems in Automated Driving System Toolbox” on page 1-2
* “Calibrate a Monocular Camera” on page 1-8



1 sensor Configuration and Coordinate System Transformations

Coordinate Systems in Automated Driving System
Toolbox

1-2

Automated Driving System Toolbox uses these coordinate systems:
* World: A fixed universal coordinate system in which all vehicles and their sensors are
placed.

* Vehicle: Anchored to the ego vehicle. Typically, the vehicle coordinate system is
placed on the ground right below the midpoint of the rear axle.

* Sensor: Specific to a particular sensor, such as a camera or a radar.

» Spatial: Specific to an image captured by a camera. Locations in spatial coordinates
are expressed in units of pixels.

World Coordinate System

All vehicles, sensors, and their related coordinate systems are placed in the world
coordinate system. A world coordinate system is important in global path planning,
localization, mapping, and driving scenario generation.

Vehicle Coordinate System

The vehicle coordinate system (Xy, Yy, Zy) used by Automated Driving System Toolbox is
anchored to the ego vehicle. The term ego vehicle refers to the vehicle that contains the
sensors that perceive the environment around the vehicle.

* The Xy axis points forward from the vehicle.

* The Yy axis points to the left, as viewed when facing forward.

* The Zy axis points up from the ground to maintain the right-handed coordinate system.
Typically, the origin of the vehicle coordinate system is placed directly on the ground

below the midpoint of the rear axle. Locations in this coordinate system are expressed in
world units, such as meters.

Values returned by the individual sensors are transformed into the vehicle coordinate
system so that they can be placed in a unified frame of reference.



Coordinate Systems in Automated Driving System Toolbox

v

For global path planning, localization, mapping, and driving scenario generation, the state
of the vehicle can be described using the pose of the vehicle. The steering angle of the
vehicle is positive in the counterclockwise direction.
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X, Y, Vehicle Coordinate System
XY World Coordinate System

W, W

[x,y,8] Vehicle Pose
&  Steering Angle

Sensor Coordinate System

An automated driving system can contain sensors located anywhere on or in the vehicle.
The location of each sensor contains an origin of its coordinate system. A camera is one
type of sensor used often in an automated driving system. Points represented in a camera
coordinate system are described with the origin located at the optical center of the
camera.
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The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles have
positive clockwise directions when looking in the positive direction of the Z-, Y-, and X-
axes, respectively.

;- Rou'"
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Spatial Coordinate System

Spatial coordinates enable you to specify a location in an image with greater granularity
than pixel coordinates. In the pixel coordinate system, a pixel is treated as a discrete unit,
uniquely identified by an integer row and column pair, such as (3, 4). In the spatial
coordinate system, locations in an image are represented in terms of partial pixels, such
as (3.3,4.7).

Yr

For more information on the spatial coordinate system, see “Spatial Coordinates” (Image
Processing Toolbox).

1-7



1 sensor Configuration and Coordinate System Transformations

Calibrate a Monocular Camera

1-8

A monocular camera is a common type of vision sensor used in automated driving
applications. When mounted on an ego vehicle, this camera can detect objects, detect
lane boundaries, and track objects through a scene.

Before you can use the camera, you must calibrate it. Camera calibration is the process of
estimating the intrinsic and extrinsic parameters of a camera using images of a
calibration pattern, such as a checkerboard. After you estimate the intrinsic and extrinsic
parameters, you can use them to configure a model of a monocular camera.

Estimate Intrinsic Parameters

The intrinsic parameters of a camera are the properties of the camera, such as its focal
length and optical center. To estimate these parameters for a monocular camera, use
Computer Vision System Toolbox™ functions and images of a checkerboard pattern.

o If the camera has a standard lens, use the estimateCameraParameters function.
» If the camera has a fisheye lens, use the estimateFisheyeParameters function.

Alternatively, to better visualize the results, use the Camera Calibrator app. For
information on setting up the camera, preparing the checkerboard pattern, and
calibration techniques, see “Single Camera Calibrator App” (Computer Vision System
Toolbox).

Place Checkerboard for Extrinsic Parameter Estimation

For a monocular camera mounted on a vehicle, the extrinsic parameters define the
mounting position of that camera. These parameters include the rotation angles of the
camera with respect to the vehicle coordinate system, and the height of the camera above
the ground.

Before you can estimate the extrinsic parameters, you must capture an image of a
checkerboard pattern from the camera. Use the same checkerboard pattern that you used
to estimate the intrinsic parameters.

The checkerboard uses a pattern-centric coordinate system (Xp, Yp), where the Xp-axis
points to the right and the Yp-axis points down. The checkerboard origin is the bottom-
right corner of the top-left square of the checkerboard.



Calibrate a Monocular Camera

Y

When placing the checkerboard pattern in relation to the vehicle, the Xp- and Yp-axes
must align with the Xy- and Yy-axes of the vehicle. In the vehicle coordinate system, the
Xy-axis points forward from the vehicle and the Yy-axis points to the left, as viewed when
facing forward. The origin is on the road surface, directly below the camera center (the
focal point of the camera).

Yv
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The orientation of the pattern can be either horizontal or vertical.

1-9



1 sensor Configuration and Coordinate System Transformations

Horizontal Orientation

In the horizontal orientation, the checkerboard pattern is either on the ground or parallel
to the ground. You can place the pattern in front of the vehicle, in back of the vehicle, or
on the left or right side of the vehicle.
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Vertical Orientation

In the vertical orientation, the checkerboard pattern is perpendicular to the ground. You
can place the pattern in front of the vehicle, in back of the vehicle, or on the left of right
side of the vehicle.
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Estimate Extrinsic Parameters

After placing the checkerboard in the location you want, capture an image of it using the
monocular camera. Then, use the estimateMonoCameraParameters function to
estimate the extrinsic parameters. To use this function, you must specify the following:

* The intrinsic parameters of the camera

* The key points detected in the image, in this case the corners of the checkerboard
squares

1-11
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* The world points of the checkerboard
» The height of the checkerboard pattern's origin above the ground

For example, for image I and intrinsic parameters intrinsics, the following code
estimates the extrinsic parameters. By default, estimateMonoCameraParameters
assumes that the camera is facing forward and that the checkerboard pattern has a
horizontal orientation.

[imagePoints,boardSize] = detectCheckerboardPoints(I);

squareSize = 0.029; % Square size in meters

worldPoints = generateCheckerboardPoints(boardSize,squareSize);

patternOriginHeight = 0; % Pattern is on ground

[pitch,yaw, roll,height] = estimateMonoCameraParameters(intrinsics,
imagePoints,worldPoints,patternOriginHeight);

To increase estimation accuracy of these parameters, capture multiple images and
average the values of the image points.

Configure Camera Using Intrinsic and Extrinsic Parameters

Once you have the estimated intrinsic and extrinsic parameters, you can use the
monoCamera object to configure a model of the camera. The following sample code shows
how to configure the camera using parameters intrinsics, height, pitch, yaw, and
roll:

monoCam = monoCamera(intrinsics,height, 'Pitch',pitch, 'Yaw',yaw, 'Roll',roll);

See Also

Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters |
estimateFisheyeParameters | estimateMonoCameraParameters |
generateCheckerboardPoints

Objects
monoCamera



See Also

More About

. “Coordinate Systems in Automated Driving System Toolbox” on page 1-2
. “Configure Monocular Fisheye Camera”

. “Single Camera Calibrator App” (Computer Vision System Toolbox)
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Ground Truth Labeling and
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* “Get Started with the Ground Truth Labeler” on page 2-2
* “Use Custom Data Source Reader for Ground Truth Labeling” on page 2-23



2 Ground Truth Labeling and Verification

Get Started with the Ground Truth Labeler

2-2

The Ground Truth Labeler app provides an easy way to mark rectangular region of
interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels in a video or
image sequence. This example gets you started using the app by showing you how to:

* Manually label an image frame from a video.
* Automatically label across image frames using an automation algorithm.
* Export the labeled ground truth data.

Load Unlabeled Data

Open the app and load a video of vehicles driving on a highway. Videos must be in a file
format readable by VideoReader.

groundTruthLabeler('visiontraffic.avi')
Alternatively, open the app from the Apps tab, under Automotive. Then, from the Load

menu, load a video data source.

Explore the video. Click the Play button ] to play the entire video, or use the slider =
to navigate between frames.
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FILE

| ROILabel Definition |

= B 8

Label Sublabel Attribute

To label an ROI, you must first define an
ROI Label.

| Scene Label Definition

I|V|:E:| Define new scene label

Current Frame: Acdd Label

Time Interval Remove Label

To label a scene, you must first define a
scene label.

q

00.00000 05.60255
Start Time Current

1771770
End Time

]

17.71770 Zoom In Time interval

Max Time

The app also enables you to load image sequences, with corresponding timestamps, by
selecting Load > Image Sequence. The images must be readable by imread.

To load a custom data source that is readable by VideoReader or imread, see “Use
Custom Data Source Reader for Ground Truth Labeling” (Computer Vision System

Toolbox).

Set Time Interval to Label

You can label the entire video or start with a portion of the video. In this example, you
label a five-second time interval within the loaded video. In the text boxes below the
video, enter these times in seconds:

1 In the Start Time box, type 5.
2 In the Current Time box, type 5 so that the slider is at the start of the time interval.
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3 Inthe End Time box, type 10.

0500000 05.00000 10.00000
Start Time Current End Time

Optionally, to make adjustments to the time interval, click and drag the red interval flags.

—o

The entire app is now set up to focus on this specific time interval. The video plays only
within this interval, and labeling and automation algorithms apply only to this interval.
You can change the interval at any time by moving the flags.

To expand the time interval to fill the entire playback section, click Zoom in Time
Interval.

Create Label Definitions

Define the labels you intend to draw on the video frames. In this example, you define
labels directly within the app. To define labels from the MATLAB® command line instead,
use the labelDefinitionCreator.

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these
types of ROI labels.



Get Started with the Ground Truth Labeler

ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels | Vehicles, pedestrians, road
(bounding boxes) around signs
objects.
Line Draw linear ROI labels to Lane boundaries, guard

represent lines. To draw a
polyline ROI, use two or
more points.

rails, road curbs
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ROI Label Description Example: Driving Scene

Pixel label Assign labels to pixels for | Vehicles, road surface,
semantic segmentation. See |trees, pavement
“Label Pixels for Semantic
Segmentation” (Computer
Vision System Toolbox).

In this example, you define a Rectangle ROI label for labeling the vehicles.

In the ROI Label Definition pane on the left, click Label.

2 Create a Rectangle ROI label named vehicle and optionally write a description.
Click OK.

The vehicle label appears in the ROI Label Definition pane and is selected by
default.

3 In the first video frame within the time interval, use the mouse to draw rectangular
vehicle ROIs around the two vehicles.
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| ROl Label Definition | visiontraffic.avi
EYE Y

Label Sublabel Attribute

b wvehicle ! ':'|

| Scene Label Definition

&5l Defi
| ne news scene label
i's

Current Frame Add Label

Time Interval Remove Label

To label a =scene, you must first define a
scene label.

Create Sublabels

A sublabel is a type of ROI label that corresponds to part of a parent ROI label. Each
sublabel must belong to, or be a child of, a specific label defined in the ROI Label
Definition pane. For example, in a driving scene, a vehicle label might have sublabels for
headlights, license plates, or wheels.

Define a sublabel for the vehicle headlights.

In the ROI Label Definition pane on the left, click Sublabel.
2 (Create a Rectangle sublabel named headlight and optionally write a description.
Click OK.

The headlight sublabel appears in the ROI Label Definition pane. The sublabel is
nested under the selected ROI label, vehicle, and has the same color as its parent
label.
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ROl Label Definition

a3 i =!

Label Sublabel Attribute

b wehicle i
b headlight i

3 In the ROI Label Definition pane, select the headlight sublabel.

In the video frame, select one of the vehicle labels. To draw a sublabel in a video
frame, you must always select a parent label first. Draw a headlight sublabel around
one of the vehicle headlights.

5 Select the vehicle label again and draw a headlight sublabel around the other
headlight.

6 Repeat the previous steps to label the headlights of the other vehicle. To draw the
labels more precisely, use the Pan, Zoom In, and Zoom Out options available from
the toolstrip.
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When you select one of the vehicle labels, the Sublabels section of the Attributes and
Sublabels pane displays information about the headlight sublabels associated with that
label.
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| Attributes and Sublabels

_ vehicle
Attributes
Mo attributes defined for vehicle'

M- Sublabels
headlight : 2

Sublabels can only be used with rectangular or polyline ROI labels and cannot have their
own sublabels. For more details on working with sublabels, see “Use Sublabels and
Attributes to Label Ground Truth Data” (Computer Vision System Toolbox).

Create Attributes

An attribute provides further categorization of an ROI label or sublabel. Attributes specify
additional information about a drawable label. For example, in a driving scene, attributes
might include the type or color of a vehicle.

You can define these types of attributes.
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Attribute Type

Sample Attribute
Definition

Sample Default Values

Numeric Value

Attribute Name

numiVheels

Default Scalar Value (Optional)
4

String

Attribute Name

color

Default Walue (Optional}

Logical

Attribute Name
inKaotion L
Default Walue (Optional}

True

ogical ~

List

Attribute Name

wvehicleType List

List tem= (Each item must appear on a new ling)

True o

car e

car
truck
s

truck
SUV

Add an attribute for the vehicle type.

1 Inthe ROI Label Definition pane on the left, select the vehicle label and click

Attribute.
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In the Attribute Name box, type vehicleType. Set the attribute type to List.

In the List Items section, type different types of vehicles, such as car, truck, and
SUV, each on its own line. Optionally give the attribute a description, and click OK.

In the first frame of the video, select a vehicle ROI label. In the Attributes and
Sublabels pane, select the appropriate vehicleType attribute value for that vehicle.

Repeat the previous step to assign a vehicleType attribute to the other vehicle.

|_J Attributes and Sublabels

. vehicle
Attributes

vehicleType

Sublabelz
headlight : 2

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that
tells whether the headlight is on.

1

2-12

In the ROI Label Definition pane on the left, select the headlight sublabel and
click Attribute.

In the Attribute Name box, type 1s0n. Set the attribute type to Logical. Leave the
Default Value set to Empty, optionally write a description, and click OK.

Select a headlight in the video frame. Set the appropriate isOn attribute value, or
leave the attribute value set to Empty.
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4 Repeat the previous step to set the isOn attribute for the other headlights.

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to
delete. Deleting the attribute removes attribute information from all previously created
ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to
describe conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 Inthe Scene Label Definition pane on the left, click the Define new scene label
button, and create a scene label named sunny. Click OK.

The Scene Label Definition pane shows the scene label definition. The scene labels
that are applied to the current frame appear in the Scene Labels pane on the right.
The sunny scene label is empty (white), because the scene label has not yet been
applied to the frame.

| ROI Label Definition | | visiontraffic.avi ‘

» &[5

Label Sublabel Attribute

Scene Labels
[ Tsunny

b vehicle [ | E:E-
» headlight [

| Scene Label Definition

I 7
E‘I:lji Define new scene label

(®) Current Frame

O Time Interval

Add Label
Remove Label

-.b sunny

The entire scene is sunny, so specify to apply the sunny scene label over the entire
time interval. With the sunny scene label definition still selected in the Scene Label

Definition pane, select Time Interval.
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3 Click Add Label.

The sunny label now applies to all frames in the time interval.

l Scene Label Definition 1

E:]j Define new scene label

Scene Labels

B sunny

O Current Frame Add Label

@ Time Interval Remove Label

il » sunny =

Label Ground Truth

So far, you have labeled only one frame in the video. To label the remaining frames,
choose one of these options.

Label Ground Truth Manually

When you click the right arrow key to advance to the next frame, the ROI labels from the
previous frame do not carry over. Only the sunny scene label applies to each frame,
because this label was applied over the entire time interval.

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the
attribute information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app.
You can either define your own automation algorithm, see “Create Automation Algorithm
for Labeling” (Computer Vision System Toolbox) and “Temporal Automation Algorithms”
(Computer Vision System Toolbox), or use a built-in automation algorithm. In this
example, you label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the vehicle ROI labels. The built-in
automation algorithms do not support sublabel and attribute automation.
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1

Select the labels you want to automate. In the first frame of the video, press Ctrl and
click to select the two vehicle label annotations. The labels are highlighted in yellow.

From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm
tracks one or more rectangle ROIs over short intervals using the Kanade-Lucas-
Tomasi (KLT) algorithm.

(optional) Configure the automation settings. Click Configure Automation. By
default, the automation algorithm applies labels from the start of the time interval to
the end. To change the direction and start time of the algorithm, choose one of the
options shown in this table.

Forward Start time to End -
time 1—|:I r
Current time to End
time 'I—&l_’l'
Reverse End time to Start -
time 1—|:I r
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Direction of Run algorithm from Example

automation
Current time to
Start time I—l:l r

Leave Import selected ROIs selected so that the vehicle labels you selected can be
imported into the automation session.

4 Click Automate to open an automation session. The algorithm instructions appear in
the right pane, and the selected labels are available to automate.

|. Attributes and Sublabels | Point Tracker |

ROI Selection: You can select ROl to track before or after entering
Automation mode. To select before autemation, click one RO, or for
multiple ROIs, use Ctri+click.

Scene Labels | Run: Click Run to track the selected ROJs over the interval.

[Jsunny

Review and Modify: Review automated labels manually. You can
modify, delete, and add new labels.

Change Setfings: If you are not satisfied with the results, click Undo
Run_ Click Settings to modify algorithm settings, and then Run again
The Point Tracker is ideal for shert intervals. If the tracker veers off,
consider using a different feature detector.

Accept/Cancel: When you are satisfied with results, click Accept
-and return to manual labeling. Click Cancel to return to manual
labeling without saving automation results.

5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not
have an initial ROI label, so the algorithm did not track them. Click Undo Run. Use
the slider to find the frames where each vehicle first appears. Draw vehicle ROIs
around each vehicle, and then click Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve
the results of the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to
discard labels generated during the session and label manually instead, click Cancel.
The Cancel button cancels only the algorithm session, not the app session.
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Optionally, you can now manually label the remaining frames with sublabel and attribute
information.

To further evaluate your labels, you can view a visual summary of the labeled ground
truth. From the app toolstrip, select View Label Summary. Use this summary to
compare the frames, frequency of labels, and scene conditions. For more details, see
“View Summary of Ground Truth Labels” (Computer Vision System Toolbox). This
summary does not support sublabels or attributes.

Export Labeled Ground Truth

You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB
workspace. In both cases, the labeled ground truth is stored as a groundTruth object.
You can use this object to train a deep-learning-based computer vision algorithm. For
more details, see “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data” (Computer Vision System Toolbox).

Note If you export pixel data, the pixel label data and ground truth data are saved in
separate files but in the same folder. For considerations when working with exported pixel
labels, see “How Labeler Apps Store Exported Pixel Labels” (Computer Vision System
Toolbox).

In this example, you export the labeled ground truth to the MATLAB workspace. From the
app toolstrip, select Export Labels > To Workspace. The exported MATLAB variable,
gTruth, isa groundTruth object.

Display the properties of the exported groundTruth object. The information in your
exported object might differ from the information shown here.

gTruth
gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]

LabelDefinitions: [2x4 table]
LabelData: [531x2 timetable]

2-17



2 Ground Truth Labeling and Verification

2-18

Data Source

DataSourceis a groundTruthDataSource object containing the path to the video and
the video timestamps. Display the properties of this object.

gTruth.DataSource

ans =
groundTruthDataSource for a video file with properties

Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
TimeStamps: [531x1 duration]

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This
table does not contain information about the labels that are drawn on the video frames.
To save the label definitions in their own MAT-file, from the app toolstrip, select Save >
Label Definitions. You can then import these label definitions into another app session
by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label
definition or a scene label definition. If you exported pixel label data, the
LabelDefinitions table also includes a PixelLabelID column containing the ID
numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =
2x4 table
Name Type Description Hierarchy
'vehicle' Rectangle t [1x1 struct]
‘sunny’ Scene Y []

Within LabelDefinitions, the Hierarchy column stores information about the
sublabel and attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the vehicle label.

gTruth.LabelDefinitions.Hierarchy{1}
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ans =
struct with fields:
vehicleType: [1x1 struct]
headlight: [1x1 struct]
Type: Rectangle
Description: "'
Display information about the headlight sublabel.
gTruth.LabelDefinitions.Hierarchy{1}.headlight
ans =
struct with fields:
Type: Rectangle
Description: "'
isOn: [1x1 struct]
Display information about the vechicleType attribute.
gTruth.LabelDefinitions.Hierarchy{1}.vehicleType
ans =

struct with fields:

ListItems: {3x1 cell}
Description: "'

Label Data

LabelData is a timetable containing information about the ROI labels drawn at each
timestamp, across the entire video. The timetable contains one column per label.

Display the timetable. The first few timestamps indicate that no vehicles were detected
and that the sunny scene label is false. These results are because this portion of the
video was not labeled. Only the time interval of 5-10 seconds was labeled.

gTruth.LabelData

ans =
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531x2 timetable

Time vehicle sunny

0 sec [1x0 struct] false
0.033367 sec [1x0 struct] false
0.066733 sec [1x0 struct] false

Display the timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = gTruth.LabelData(timerange('00:00:05','00:00:10"'),:)

gTruthInterval =

150x2 timetable

Time vehicle sunny
5.005 sec [1x2 struct] true
5.0384 sec [1x2 struct] true

5.0717 sec [1x2 struct] true
For each vehicle label, the structure includes the position of the bounding box and
information about its sublabels and attributes.
Display the bounding box positions for the vehicles at the start of the time interval.
gTruthInterval(l,:).vehicle{1l}.Position % [x y width height], in pixels
ans =
1x4 single row vector

415.5744  89.7500 120.2985 120.2985

ans =
1x4 single row vector

230.0450 1.4422 109.7325  47.2849
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Save App Session

From the app toolstrip, select Save and save a MAT-file of the app session. The saved
session includes the data source, label definitions, and labeled ground truth. It also
includes your session preferences, such as the layout of the app. To change layout
options, select Layout.

The app session MAT-file is separate from the ground truth MAT-file that is exported when
you select Export > From File. To share labeled ground truth data, as a best practice,
share the ground truth MAT-file containing the groundTruth object, not the app session
MAT-file. For more details, see “Share and Store Labeled Ground Truth Data” (Computer
Vision System Toolbox).

See Also

Apps
Ground Truth Labeler

Objects

driving.connector.Connector | groundTruth | groundTruthDataSource |
labelDefinitionCreator | vision.labeler.AutomationAlgorithm |
vision.labeler.mixin.Temporal

Related Examples

. “Automate Ground Truth Labeling of Lane Boundaries”

. “Automate Ground Truth Labeling for Semantic Segmentation”

. “Automate Attributes of Labeled Objects”

. “Evaluate Lane Boundary Detections Against Ground Truth Data”

. “Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

More About

. “Use Custom Data Source Reader for Ground Truth Labeling” (Computer Vision
System Toolbox)

. “Use Sublabels and Attributes to Label Ground Truth Data” (Computer Vision
System Toolbox)

2-21



2 Ground Truth Labeling and Verification

2-22

“Label Pixels for Semantic Segmentation” (Computer Vision System Toolbox)
“Create Automation Algorithm for Labeling” (Computer Vision System Toolbox)
“View Summary of Ground Truth Labels” (Computer Vision System Toolbox)
“Share and Store Labeled Ground Truth Data” (Computer Vision System Toolbox)

“Train Object Detector or Semantic Segmentation Network from Ground Truth
Data” (Computer Vision System Toolbox)
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Use Custom Data Source Reader for Ground Truth
Labeling

In this section...

“Import Data Source Using Custom Reader Dialog Box” on page 2-23
“Import Data Source Using Custom Reader Function” on page 2-24

The Ground Truth Labeler (requires Automated Driving System Toolbox) and Video
Labeler apps enable you to label ground truth data in a video or in a sequence of images.

You can use a custom reader to import any video or sequence of images that is supported
by VideoReader or imread. You can either use the custom reader dialog box in the app
or open the app and specify a custom reader source.

The Image Labeler app does not support custom data source readers.

Import Data Source Using Custom Reader Dialog Box

In your app, Load > Custom Reader to load your data by using a custom reader
function. You must provide the Custom reader function handle and the Data source
name. In addition, you must import corresponding timestamps from the MATLAB
workspace.
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SR 4 Load Custorn Data Source — o

I Video

Image Sequence Custom reader function

Custom Reader Data source name
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'-_'j Session
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Click here for mare information

oad Cancel

Import Data Source Using Custom Reader Function

Specify the Custom Reader

Specify a custom reader as a function handle. The custom reader must have the syntax:
outputImage = readerFcn(sourceName,currentTimeStamp)

where readerFcn is the name of your custom reader function.

The custom reader function loads an image from sourceName, which corresponds to the
current timestamp specified by currentTimeStamp.

currentTimeStamp = timestamps(currldx);

The outputImage from the custom function must be a grayscale or RGB image in any
format supported by imshow. currentTimeStamp is a scalar value that corresponds to
the current frame that the algorithm is executing.

Read Ground Truth Data Using Custom Reader

Use the groundTruthDataSource function to read the custom source data with the
custom reader function handle:
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gtSource = groundTruthDataSource(sourceName, readerFcn, timeStamps)

The syntax returns a groundTruthDataSource object with the custom reader function
handle, readerFcn. The app uses the handle to load the custom data source specified by
sourceName. The custom reader function loads an image from sourceName that
corresponds to the current timestamp specified by the indexed value in the timeStamps
vector.

The syntax returns a groundTruthDataSource object, which the app uses to read data
from the custom source.

Read Ground Truth Data Using Custom Reader

Use the groundTruthDataSource function to read the custom source data with the
custom reader function handle:

gtSource = groundTruthDataSource(sourceName, readerFcn, timeStamps)

The syntax returns a groundTruthDataSource object with the custom reader function
handle, readerFcn. The app uses the handle to load the custom data source specified by
sourceName. The custom reader function loads an image from sourceName that
corresponds to the current timestamp specified by the indexed value in the timeStamps
vector.

The syntax returns a groundTruthDataSource object, which the app uses to read data
from the custom source.

Import Ground Truth Data into App

You can import the returned groundTruthDataSource object into the Ground Truth
Labeler or Video Labeler app. For example:

groundTruthLabeler(gtSource)

videolLabeler(gtSource)

See Also

Apps
Ground Truth Labeler | Video Labeler
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Functions
groundTruth | groundTruthDataSource

More About

. “Get Started with the Ground Truth Labeler” on page 2-2
. “Get Started with the Video Labeler” (Computer Vision System Toolbox)
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* “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2
* “Linear Kalman Filters” on page 3-11
* “Extended Kalman Filters” on page 3-19
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Visualize Sensor Data and Tracks in Bird's-Eye Scope

The Bird's-Eye Scope visualizes signals from your Simulink model that represent aspects
of a driving scenario. Using the scope, you can analyze:

* Sensor coverages of vision and radar sensors
* Sensor detections of actors and lane boundaries
» Tracks of moving objects in the scenario

This example shows you how to display these signals on the scope and analyze the signals
during simulation.

Open Model and Scope

Open a model containing signals for sensor detections and for tracks. This model is used
in the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” example.

model = fullfile(matlabroot, 'examples', 'driving', 'SyntheticDataSimulinkExample');
open_system(model)

[Synthetic Data Simulation}

Actors and Sensor Simulation Tracking and Sensor Fusion

e - Wi
Seanano s ciors Actors Detaction o 4 Detections Object

Reader Actors - Caoncatenation Detections
Radar Detacti > Detection out » In2 Tracker

Tracks | Trjcks @

In Clustering

Scenario Reader

Sensor Simulation Cluster Radar Detections

Open the scope. From the Simulink model toolbar, click the Bird's-Eye Scope button
. If instead you see a button for a different model visualization tool, such as the

m - *
Simulation Data Inspector or Logic Analyzer @ , click the arrow next to
the displayed button and select Bird's-Eye Scope.
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Simulation Data Inspector

Logic Analyzer

HEE 5

Bird's-Eye Scope

Log Selected Signals

Configure Logging...

@ g)

Help..

Find Signals

When you first open the Bird's-Eye Scope, the scope canvas is blank and displays no
signals. To find signals from the opened model that the scope can display, from the scope

toolstrip, click Find Signals. The scope updates the block diagram and automatically
finds the signals in the model.
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~ Ground Truth —— Road Boundaries | Vision Coverage || Radar Coverage @ Vision Detections @ Radar Detections O Tracks

Road Boundaries
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~ Vision
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2 Vision Detection Generator1

~ Radar
3 Radar Detection Generator
4 Radar Detection Generator1
5 Radar Detection Generator2
6 Radar Detection Generator3

Vision Detection Generator1
~ Radar

7 Radar Detection Generator4 =
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& Radar Detection Generators o

. =
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+ Vision =
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=

=

£

5

—

Radar Detection Generator

Radar Detection Generator1
Radar Detection Generator2
Radar Detection Generator3
Radar Detection Generator4

Radar Detection Generators
~ Tracks

Tracks
~ Other Applicable Signals

||

Detection Concatenation
Detection Concatenation2
Cluster Radar Detections

Detections

Lateral Distance (m)

The left pane lists all the signals that the scope found. These signals are grouped based
on their sources within the model.
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Signal Group

Description

Signal Sources

Ground Truth

Road boundaries, lane
markings, and actors in the
scenario, including the ego
vehicle

You cannot modify this
group or any of the signals
within it.

¢ Scenario Reader block
(such as the one used in
the “Sensor Fusion Using
Synthetic Radar and
Vision Data in Simulink”
example)

Vision Detection
Generator and Radar
Detection Generator
blocks (for actor profile
information only, such as
the length, width, and
height of actors)

+ If actor profile
information is not set
or is inconsistent
between blocks, the
scope sets the actor
profiles to the block
defaults.

* The profile of the ego
vehicle is always set
to the block defaults.

Sensor Coverage

Coverage areas of your
vision and radar sensors,
sorted into Vision and
Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level Sensor
Coverage group.

¢ Vision Detection
Generator block

¢ Radar Detection
Generator block
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Signal Group Description Signal Sources
Detections Detections obtained from * Vision Detection
your vision and radar Generator block

sensors, sorted into Vision |,

Radar Detection
and Radar subgroups

Generator block

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level
Detections group.

Tracks Tracks of objects in the e Multi Object Tracker
scenario block

Other Applicable Signals |Signals that the scope * Blocks that combine or
cannot automatically group, cluster signals (such as
such as ones that combine the Detection
information from multiple Concatenation block)
S + Nonvirtual Simulink

buses containing position
and velocity information
for detections and tracks

Signals in this group do not
display during simulation.

The scope canvas displays the signals grouped in Ground Truth and Sensor Coverage
only. The signals in Detections and Tracks do not display until you simulate the model.
The signals in Other Applicable Signals do not display during simulation. If you want
the scope to display specific signals, move them into the appropriate group before
simulation. If an appropriate group does not exist, create one.

Run Simulation

Simulate the model from within the Bird's-Eye Scope by clicking Run. The scope canvas
displays the detections and tracks.
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— Road Boundaries |:| Vision Coverage |:| Radar Coverage @ Vision Detections @ Radar Detections O Tracks

Lengitudinal Distance (m)

4

Lateral Distance (m)

During simulation, the scope canvas remains centered on the ego vehicle. You can pan
and zoom to inspect other parts of the model during simulation. To center on the ego

vehicle again, in the upper right corner of the scope canvas, click the home button L.

You can update the properties of signals during simulation. To access the properties of a
signal, first select the signal from the left pane. Then, from the scope toolstrip, click
Properties. For example, with these properties, you can show and hide coverages or
detections. You can also change the color or transparency of certain coverages to
highlight them.



3 Tracking and Sensor Fusion

3-8

Under Settings, you can change the axis limits and the display of the signal names
during simulation. You cannot change the Track position selector and Track velocity
selector parameters during simulation. For more details on these parameters, see the
parameters section on the Bird's-Eye Scope reference page.

To prevent signals from displaying during the next simulation, first right-click the signal.
Then, select Move to Other Applicable to move that signal into the Other Applicable
Signals group.

Organize Signal Groups (Optional)

To further organize the signals, you can rename signal groups or move signals into new
groups. For example, you can rename the Vision and Radar subgroups to Front of Car
and Back of Car. Then you can drag the signals as needed to move them into the
appropriate groups based on the new group names. When you drag a signal to a new
group, the color of the signal changes to match the color assigned to its group.

You cannot delete or modify the top-level groups in the left pane, but you can modify or
delete any subgroup. If you delete a subgroup, its signals are moved automatically to the
group that contained that subgroup.

Update Model and Rerun Simulation

After you run the simulation, modify the model and inspect how the changes affect the
visualization on the Bird's-Eye Scope. For example, in the Sensor Simulation subsystem
of the model, open the Vision Detection Generator blocks. Then, on the Measurements
tab, reduce the Maximum detection range (m) parameter to 50. To see how the sensor
coverage changes, rerun the simulation.

When you modify block parameters, you can rerun the simulation without having to find

signals again. If you add or remove blocks, ports, or signal lines, then you must click Find
Signals again before rerunning the simulation.

Save and Close Model
Save and close the model. The settings for the Bird's-Eye Scope are also saved.

If you reopen the model and the Bird's-Eye Scope, the scope canvas is initially blank.
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Longitudinal Distance (m)

Click Find Signals to find the signals again and view the saved signal properties. For
example, if you reduced the detection range in the previous step, the scope canvas
displays this reduced range.

Lateral Distance (m)

See Also
Bird's-Eye Scope | Detection Concatenation | Multi Object Tracker | Radar Detection
Generator | Vision Detection Generator

Related Examples

. “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
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. “Lane Keeping Assist with Lane Detection”

. “Adaptive Cruise Control with Sensor Fusion”

. “Lateral Control Tutorial”

. “Automatic Emergency Braking with Sensor Fusion”
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Linear Kalman Filters

In this section...

“State Equations” on page 3-11

“Measurement Models” on page 3-13

“Linear Kalman Filter Equations” on page 3-13
“Filter Loop” on page 3-14

“Constant Velocity Model” on page 3-16

“Constant Acceleration Model” on page 3-17

When you use a Kalman filter to track objects, you use a sequence of detections or
measurements to construct a model of the object motion. Object motion is defined by the
evolution of the state of the object. The Kalman filter is an optimal, recursive algorithm
for estimating the track of an object. The filter is recursive because it updates the current
state using the previous state, using measurements that may have been made in the
interval. A Kalman filter incorporates these new measurements to keep the state estimate
as accurate as possible. The filter is optimal because it minimizes the mean-square error
of the state. You can use the filter to predict future states or estimate the current state or
past state.

State Equations

For most types of objects tracked in Automated Driving System Toolbox, the state vector
consists of one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant
acceleration and convert these equations to space-state form.

mi=f

X=—-=a
m

If you define the state as
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you can write Newton’s law in state-space form.

d X1 01 X1 0
— = + . |a
dt| xo 0 0] x9 1
You use a linear dynamic model when you have confidence that the object follows this

type of motion. Sometimes the model includes process noise to reflect uncertainty in the
motion model. In this case, Newton’s equations have an additional term.

dlx] [0 17«7 [0 0
_— = + a+ Up
dt| xg 0 0] x9 1 1
v, and is the unknown noise perturbations of the acceleration. Only the statistics of the

noise are known. It is assumed to be zero-mean Gaussian white noise.

You can extend this type of equation to more than one dimension. In two dimensions, the
equation has the form

x] [01 0 0[] [0] [0
|| [0 00 0fx| fa| v
dty1 00013’1 0 0

The 4-by-4 matrix on the right side is the state transition model matrix. For independent
x- and y- motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the
length of the time interval. In discrete form, for a sample interval of T, the state-
representation becomes

X9 1 {1 T} X1k [0} {0}
E] + a+ v
Xope1] L0 1] %p| [T 1
The quantity x;,; is the state at discrete time k+1, and xy, is the state at the earlier

discrete time, k. If you include noise, the equation becomes more complicated, because
the integration of noise is not straightforward.

The state equation can be generalized to
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xk+1 = Fkxk +Gkuk +Uk

F, is the state transition matrix and G, is the control matrix. The control matrix takes into
account any known forces acting on the object. Both of these matrices are given. The last
term represents noise-like random perturbations of the dynamic model. The noise is
assumed to be zero-mean Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential
equations. Discrete-time systems with input noise are described by linear stochastic
differential equations. A state-space representation is a mathematical model of a physical
system where the inputs, outputs, and state variables are related by first-order coupled
equations.

Measurement Models

Measurements are what you observe about your system. Measurements depend on the
state vector but are not always the same as the state vector. For instance, in a radar
system, the measurements can be spherical coordinates such as range, azimuth, and
elevation, while the state vector is the Cartesian position and velocity. For the linear
Kalman filter, the measurements are always linear functions of the state vector, ruling out
spherical coordinates. To use spherical coordinates, use the extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to
the current state by

2 =Hkxk + Wy,

wj represents measurement noise at the current time step. The measurement noise is also
zero-mean white Gaussian noise with covariance matrix Q described by Q, = E[nyn,”].

Linear Kalman Filter Equations
Without noise, the dynamic equations are
Xpe1 = Fpxp, + Gy,
Likewise, the measurement model has no measurement noise contribution. At each

instance, the process and measurement noises are not known. Only the noise statistics
are known. The
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z, = Hpxy,

You can put these equations into a recursive loop to estimate how the state evolves and
also how the uncertainties in the state components evolve.

Filter Loop

Start with a best estimate of the state, x;,, and the state covariance, Py,. The filter
performs these steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

Xpr1fe = Frxrp + Grit,-
Propagate the covariance matrix as well.
Py = F Py FE +Q

ke = LRCRRLR k-

The subscript notation k+1|k indicates that the quantity is the optimum estimate at
the k+1 step propagated from step k. This estimate is often called the a priori
estimate.

Then predict the measurement at the updated time.

Zha1lk = Hp41Xp11)k

2 Use the difference between the actual measurement and predicted measurement to
correct the state at the updated time. The correction requires computing the Kalman
gain. To do this, first compute the measurement prediction covariance (innovation)

T
Sk+1 = Hpo1BppHpr1 + Rpya
Then the Kalman gain is
T -1
Kpi1 =Bk He11Sk11

and is derived from using an optimality condition.

3-14



Linear Kalman Filters

3  Correct the predicted estimate with the measurement. Assume that the estimate is a
linear combination of the predicted state and the measurement. The estimate after
correction uses the subscript notation, k+1|k+1. is computed from

Xkt1k+1 = Xk+1k + Kri1(Zhe1 — 2p412)

where K, ; is the Kalman gain. The corrected state is often called the a posteriori
estimate of the state because it is derived after the measurement is included.

Correct the state covariance matrix

Pk+1|k+1 = Pk+1|k - Kk+1Sk+1K;e+1

Finally, you can compute a measurement based upon the corrected state. This is not a
correction to the measurement but is a best estimate of what the measurement would

be based upon the best estimate of the state. Comparing this to the actual
measurement gives you an indication of the performance of the filter.

This figure summarizes the Kalman loop operations.
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Predict
Initialize Tratke = Frpp + Grug

Tojo P"i“‘ > B 1k = Fi. Py L'L.i.f + Qr

Y

Zhstfe = Hen1Tp

Correct

Sk+1 = Hes1 PepaHE  + Rir

Kis1 = PeppHL, 1Sk

Tr kst = Thatk + Kisr (21 — 2esap) [€

Prspsr = Py — K1 Sen K

Zhpipks+1 = Hepampy 1lk+1

Constant Velocity Model

The linear Kalman filter contains a built-in linear constant-velocity motion model.
Alternatively, you can specify the transition matrix for linear motion. The state update at
the next time step is a linear function of the state at the present time. In this filter, the
measurements are also linear functions of the state described by a measurement matrix.
For an object moving in 3-D space, the state is described by position and velocity in the x-,
y-, and z-coordinates. The state transition model for the constant-velocity motion is
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(%1 | 1T 0 0 0 0 % |
Ueke1| |0 1 0 0 0 O Vxk
Ye+1 | |0 0 1 T 0 O} v
vyret| |0 0 0 1 0 Ofvys
Z1 | |00 0 01 T| 2
(Vg1 | L0000 0 10,

The measurement model is a linear function of the state vector. The simplest case is one
where the measurements are the position components of the state.

Xp,

Ux,k
mex| 110000 0

Yh
my|=/0 0 100 0]
m 000071 0f°>"
2,k 2

_vz’k_

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model.

Alternatively, you can specify the transition matrix for constant-acceleration linear
motion. The transition model for linear acceleration is
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1
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The simplest case is one where the measurements are the position components of the
state.

Xp
Uy
Qx k

Yk
Uy,k

@y k

my R

My k| =

mzr

)

o o =
oS O O
oS O O
(=R -
oS O O
oS O O
= o O
oS O O
oS © O

73
Uzl

@y k

3-18



Extended Kalman Filters

Extended Kalman Filters

In this section...
“State Update Model” on page 3-19
“Measurement Model” on page 3-20

“Extended Kalman Filter Loop” on page 3-20
“Predefined Extended Kalman Filter Functions” on page 3-21

Use an extended Kalman filter when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. A simple example is when
the state or measurements of the object are calculated in spherical coordinates, such as
azimuth, elevation, and range.

State Update Model

The extended Kalman filter formulation linearizes the state equations. The updated state
and covariance matrix remain linear functions of the previous state and covariance
matrix. However, the state transition matrix in the linear Kalman filter is replaced by the
Jacobian of the state equations. The Jacobian matrix is not constant but can depend on
the state itself and time. To use the extended Kalman filter, you must specify both a state
transition function and the Jacobian of the state transition function.

Assume there is a closed-form expression for the predicted state as a function of the
previous state, controls, noise, and time.

Xpy1 = [ oxp,up, Wy, 0)
The Jacobian of the predicted state with respect to the previous state is

Jf

F® =2

ox

The Jacobian of the predicted state with respect to the noise is

g _ 9

awi ’
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These functions take simpler forms when the noise enters linearly into the state update
equation:

Xy = [ epup, 0 +wy,

In this case, FW = 1,,.

Measurement Model

In the extended Kalman filter, the measurement can be a nonlinear function of the state
and the measurement noise.

2 = h(xy,vp,0)

The Jacobian of the measurement with respect to the state is

o
.

H(x) -

The Jacobian of the measurement with respect to the measurement noise is

oh
o’

H(U) —

These functions take simpler forms when the noise enters linearly into the measurement
equation:

2y, =h(xk,t)+vk

In this case, HY = 1.

Extended Kalman Filter Loop

This is extended kalman filter loop is almost identical to the linear Kalman filter loop
except that:

* The exact nonlinear state update and measurement functions are used whenever
possible and the state transition matrix is replaced by the state Jacobian
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* The measurement matrices are replaced by the appropriate Jacobians.

Predict
Initialize Trsape = f(@rpps ub)
ID|D, Pﬂlﬂ = > Pk+l|k — FIEE)P]CMF;EI)T + F(U}QkF(U)T

Zgr1lk = h(Tpi)k)

Correct

Sk+1 = H;gfijHung}T + H® Ry HWIT

T g-1
Kiy1 = Py Hi 1S5

Thprkert = Thark + Kiar (2641 — 2sape) (<
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Predefined Extended Kalman Filter Functions

Automated Driving System Toolbox provides predefined state update and measurement
functions to use in the extended Kalman filter.

Motion Model Function Name Function Purpose

Constant velocity constvel Constant-velocity state
update model
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Motion Model Function Name Function Purpose
constveljac Constant-velocity state
update Jacobian
cvmeas Constant-velocity
measurement model
cvmeasjac Constant-velocity
measurement Jacobian
Constant acceleration constacc Constant-acceleration state
update model
constaccjac Constant-acceleration state
update Jacobian
cameas Constant-acceleration
measurement model
cameasjac Constant-acceleration
measurement Jacobian
Constant turn rate constturn Constant turn-rate state
update model
constturnjac Constant turn-rate state
update Jacobian
ctmeas Constant turn-rate
measurement model
ctmeasjac Constant-turnrate

measurement Jacobian
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Build a Driving Scenario and Generate Synthetic
Detections

4-2

This example shows you how to build a driving scenario and generate vision and radar
sensor detections from it by using the Driving Scenario Designer app. You can use
these detections to test your controllers or sensor fusion algorithms.

This example covers the entire workflow for creating a scenario and generating synthetic
detections. Alternatively, you can generate detections from prebuilt scenarios. For more
details, see “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-
18.

Create a New Driving Scenario

To open a blank session of the app, at the MATLAB command prompt, enter
drivingScenarioDesigner.

Add a Road

Add a curved road to the scenario canvas. From the app toolstrip, click Add Road. Then
click one corner of the canvas, extend the road to the opposite corner, and double-click to
create the road.
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To make the road curve, add a road center around which to curve it. Right-click the
middle of the road and select Add Road Center. Then drag the added road center to one
of the empty corners of the canvas.
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To adjust the road further, you can click and drag any of the road centers. To create more
complex curves, add more road centers.

Add Lanes

By default, the road is a single lane and has no lane markings. To make the scenario more
realistic, convert the road into a two-lane highway. In the left pane, on the Roads tab,
expand the Lanes section. Set the Number of lanes to 2 and the Lane Width to 3.6
meters, which is a typical highway lane width.
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The road is now one-way and has solid lane markings on either side to indicate the
shoulder. Make the road two-way by converting the center lane marking from a single
dashed line to a solid double-yellow line. From the Marking list, select 2:Dashed. Then
set the Type to DoubleSolid and specify the Color as the string yellow.
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Add Vehicles

By default, the first car that you add to a scenario the ego car, which is the main car in
the driving scenario. The ego car contains the sensors that detect the lane markings,
pedestrians, or other cars in the scenario. Add the ego car, and then add a second car for
the ego car to detect.

Add Ego Car

To add the ego car, right-click one end of the road, and select Add Car. To specify the
trajectory of the car, right-click the car, select Add Waypoints, and add waypoints along
the road for the car to pass through. After you add the last waypoint along the road, press
Enter. The car autorotates in the direction of the first waypoint. For finer precision over
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the trajectory, you can adjust the waypoints. You can also right-click the path to add new
waypoints.

Now adjust the speed of the car. In the left pane, on the Actors tab, set Constant Speed
to 15 m/s. For more control over the speed of the car, clear the Constant Speed check
box and set the velocity between waypoints in the Waypoints table.

Add Second Car

Add a vehicle for the ego car to detect. From the app toolstrip, click Add Actor and select
Car. Add the second car with waypoints, driving in the lane opposite from the ego car and
on the other end of the road. Leave the speed and other settings of the car unchanged.
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Add a Pedestrian

Add to the scenario a pedestrian crossing the road. Zoom in (Ctrl+Plus) on the middle of
the road, right-click one side of the road, and click Add Pedestrian. Then, to set the path
of the pedestrian, add a waypoint on the other side of the road.
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To test the speed of the cars and the pedestrian, run the simulation. Adjust actor speeds
or other properties as needed by selecting the actor from the left pane of the Actors tab.

[ Ronds [ Actos ]

1: Car {ego car) S .

2. Carl

3. Pedestrian
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Add Sensors

Add front-facing radar and vision (camera) sensors to the ego car. Use these sensors to
generate detections of the pedestrian, the lane boundaries, and the other vehicle.

Add Camera

From the app toolstrip, click Add Camera. The sensor canvas shows standard locations
at which to place sensors. Click the front-most predefined sensor location to add a camera
sensor to the front bumper of the ego car. To place sensors more precisely, you can
disable snapping options. In the bottom-left corner of the sensor canvas, click the

Configure the Sensor Canvas button )
By default, the camera detects only actors and not lanes. To enable lane detections, on
the Sensors tab in the left pane, expand the Detection Parameters section and set

Detection Type to Objects & Lanes. Then expand the Lane Settings section and
update the settings as needed.

Add Radar

Snap a radar sensor to the front-left wheel. Right-click the predefined sensor location for
the wheel and select Add Radar. By default, sensors added to the wheels are short
range.

Tilt the radar sensor toward the front of the car. Move your cursor over the coverage
area, then click and drag the angle marking.
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Add an identical radar sensor to the front-right wheel. Right-click the sensor on the front-
left wheel and click Copy. Then right-click the predefined sensor location for the front-
right wheel and click Paste. The orientation of the copied sensor mirrors the orientation
of the sensor on the opposite wheel.
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The camera and radar sensors now provide overlapping coverage of the front of the ego
car.

Generate Sensor Detections

Run Scenario

To generate detections from the sensors, click Run. As the scenario runs, the Ego-

Centric View displays the scenario from the perspective of the ego car. The Bird’s-Eye
Plot displays the detections.
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To turn off certain types of detections, in the bottom-left corner of the bird's-eye plot,
click the Configure the Bird's-Eye Plot button )

By default, the scenario ends when the first actor stops. To have the scenario run for a set
time instead, from the app toolstrip, click Settings and change the stop condition.

Export Sensor Detections

To export the detections to the MATLAB workspace, from the app toolstrip, click Export
> Export Sensor Data. Name the workspace variable and click OK. The app saves the
sensor data as a structure containing the actor poses, object detections, and lane
detections at each time step.

To export a MATLAB function that generates the scenario and its detections, click Export
> Export MATLAB Function. The scenario is a drivingScenario object. The sensor
detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the scenario,
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you can update the code in the exported function directly. To generate new detections,
call the exported function.

Save Session

After you generate the detections, click Save to save the app session to a MAT-file. In
addition, you can save the sensor models separately. You can also save the road and actor
models into a separate file.

You can reopen this session from within the app or by using this syntax at the MATLAB
command prompt:

drivingScenarioDesigner(sessionFileName)

See Also

Apps
Driving Scenario Designer

Classes
drivingScenario

System Objects
radarDetectionGenerator | visionDetectionGenerator

More About
. “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18
. “Generate Synthetic Detections from a Euro NCAP Scenario” on page 4-40

. “Add OpenDRIVE Roads to Driving Scenario” on page 4-60
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Generate Synthetic Detections from a Prebuilt Driving
Scenario

4-18

The Driving Scenario Designer app provides a library of prebuilt scenarios
representing common driving maneuvers. The app also includes scenarios representing
European New Car Assessment Programme (Euro NCAP®) test protocols. You can
generate synthetic vision and radar detections from these prebuilt scenarios. You can
then use these detections to test your vehicle controllers or sensor fusion algorithms.

Choose a Prebuilt Scenario

To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the prebuilt scenarios are stored as MAT-files and organized into folders. To
open a prebuilt scenario file, from the app toolstrip, select Open > Prebuilt Scenario.
Then select a prebuilt scenario from one of the folders.

* “Euro NCAP” on page 4-18

* “Intersections” on page 4-18

¢ “Turns” on page 4-23

e “U-Turns” on page 4-31

Euro NCAP

These scenarios represent Euro NCAP test protocols. The app includes scenarios for
testing automatic emergency braking, emergency lane keeping, and lane keep assist
systems. For more details, see “Generate Synthetic Detections from a Euro NCAP
Scenario” on page 4-40.

Intersections

These scenarios involve common traffic patterns at four-way intersections and
roundabouts.
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File Name

Description

EgoCarGoesStraight BicycleFromLef
tGoesStraight Collision.mat

The ego car travels north and goes straight
through an intersection. A bicycle coming
from the left side of the intersection goes
straight and collides with the ego vehicle.
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File Name

Description

EgoCarGoesStraight PedestrianToRi
ghtGoesStraight.mat

The ego car travels north and goes straight
through an intersection. A pedestrian in the
lane to the right of the ego car also travels
north and goes straight through the
intersection. The pedestrian travels at a
slower pace than the ego car.
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File Name

Description

EgoCarGoesStraight VehicleFromLef
tGoesStraight.mat

The ego car travels north and goes straight
through an intersection. A vehicle coming
from the left side of the intersection also
goes straight and crosses through the
intersection first.
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File Name

Description

EgoCarGoesStraight VehicleFromRig
htGoesStraight.mat

The ego car travels north and goes straight
through an intersection. A vehicle coming
from the right side of the intersection also
goes straight and crosses through the
intersection first.
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File Name

Description

Roundabout.mat

The ego car travels north and crosses the
path of a pedestrian while entering a
roundabout. The ego car then passes a
truck as both vehicles drive through the
roundabout.

Turns

These scenarios involve turns at four-way intersections.
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File Name

Description

EgoCarGoesStraight VehicleFromLef
tTurnsLeft.mat

The ego car travels north and goes straight
through an intersection. A vehicle coming
from the left side of the intersection turns
left and ends up in front of the ego car.
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File Name

Description

EgoCarGoesStraight VehicleFromRig
htTurnsRight.mat

The ego car travels north and goes straight
through an intersection. A vehicle coming
from the right side of the intersection turns
right and ends up in front of the ego car.
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File Name

Description

EgoCarGoesStraight VehicleInFront
TurnsLeft.mat

The ego car travels north and goes straight
through an intersection. A vehicle in front
of the ego car turns left at the intersection.
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File Name

Description

EgoCarGoesStraight VehicleInFront
TurnsRight.mat

The ego car travels north and goes straight
through an intersection. A vehicle in front
of the ego car turns right at the
intersection.
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File Name

Description

EgoCarTurnsLeft PedestrianFromLef
tGoesStraight.mat

The ego car travels north and turns left at
an intersection. A pedestrian coming from
the left side of the intersection goes
straight. The ego car completes its turn
before the pedestrian crosses the
intersection.




Generate Synthetic Detections from a Prebuilt Driving Scenario

File Name

Description

EgoCarTurnsLeft PedestrianInOpplLa
neGoesStraight.mat

The ego car travels north and turns left at
an intersection. A pedestrian in the
opposite lane goes straight through the
intersection. The ego car completes its turn
before the pedestrian crosses the
intersection.
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File Name

Description

EgoCarTurnsLeft VehicleInFrontGoe
sStraight.mat

The ego car travels north and turns left at
an intersection. A vehicle in front of the ego
car goes straight through the intersection.
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File Name

Description

EgoCarTurnsRight VehicleInFrontGo
esStraight.mat

The ego car travels north and turns right at
an intersection. A vehicle in front of the ego
car goes straight through the intersection.

U-Turns

These scenarios involve U-turns at four-way intersections.
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File Name

Description

EgoCarGoesStraight VehicleInOppLane
MakesUTurn.mat

The ego car travels north and goes
straight through an intersection. A
vehicle in the opposite lane makes a U-
turn. The ego car ends up behind the
vehicle.
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File Name

Description

EgoCarMakesUTurn PedestrianFromRigh
tGoesStraight.mat

The ego car travels north and makes a U-
turn at an intersection. A pedestrian
coming from the right side of the
intersection goes straight and crosses
the path of the U-turn.
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File Name

Description

EgoCarMakesUTurn VehicleInOppLaneGo
esStraight.mat

The ego car travels north and makes a U-
turn at an intersection. A vehicle
traveling south in the opposite lane goes
straight and crosses the path of the U-
turn.
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File Name Description
EgoCarTurnsLeft VehiclelMakesUTurn |The ego car travels north and turns left
Vehicle2GoesStraight.mat at an intersection. A vehicle in front of

the ego car makes a U-turn at the
intersection. A second vehicle, a truck,
comes from the right side of the
intersection and goes in front of the ego
car.
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File Name

Description

EgoCarTurnsLeft VehicleFromLeftMake
sUTurn.mat

The ego car travels north and turns left
at an intersection. A vehicle coming from
the left side of the intersection makes a
U-turn. The ego car ends up behind the
vehicle.
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File Name

Description

EgoCarTurnsRight VehicleFromRightMa
kesUTurn.mat

The ego car travels north and turns right
at an intersection. A vehicle coming from
the right side of the intersection makes a
U-turn. The ego car ends up behind the
vehicle.

Modify Scenario

After you choose a scenario, you can modify the parameters of the roads and actors. For
example, from the Actors tab on the left, you can change the position or velocity of the
ego car or other actors. From the Roads tab, you can change the width of the lanes or the

type of lane markings.

You can also add or modify sensors. For example, from the Sensors tab, you can change
the detection parameters or the positions of the sensors. By default, in Euro NCAP
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scenarios, the ego car does not contain sensors. All other prebuilt scenarios have at least
one front-facing camera or radar sensor, set to detect lanes and objects.

Generate Synthetic Detections

To generate detections from the sensors, from the app toolstrip, click Run. As the
scenario runs, the Ego-Centric View displays the scenario from the perspective of the
ego car. The Bird’s-Eye Plot displays the detections.

T T T I

Export the detections.

» To export the detections to the MATLAB workspace, from the app toolstrip, click
Export > Export Sensor Data. Name the workspace variable and click OK.
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* To export a MATLAB function that generates the scenario and its detections, click
Export > Export MATLAB Function. The scenario is a drivingScenario object.
The sensor detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the
scenario, you can update the code in the exported function directly. To generate new
detections, call the exported function.

Save Scenario

Because prebuilt scenarios are read-only, save a copy of the driving scenario to a new
folder. From the app toolstrip, select Save > Session As to save the app session to a
MAT-file.

You can reopen this session from within the app or by using this syntax at the MATLAB
command prompt:

drivingScenarioDesigner(sessionFileName)

See Also

Apps
Driving Scenario Designer

Classes
drivingScenario

System Objects
radarDetectionGenerator | visionDetectionGenerator

More About
. “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
. “Generate Synthetic Detections from a Euro NCAP Scenario” on page 4-40
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Generate Synthetic Detections from a Euro NCAP
Scenario
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The Driving Scenario Designer app provides a library of prebuilt scenarios
representing European New Car Assessment Programme (Euro NCAP) test protocols. The
app includes scenarios for testing automatic emergency braking (AEB), emergency lane
keeping (ELK), and lane keep assist (LKA) systems.

Choose a Euro NCAP Scenario

To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the Euro NCAP scenarios are stored as MAT-files and organized into folders.
To open a Euro NCAP file, from the app toolstrip, select Open > Prebuilt Scenario. The
PrebuiltScenarios folder opens, which includes subfolders for all prebuilt scenarios
available in the app (see also “Generate Synthetic Detections from a Prebuilt Driving
Scenario” on page 4-18).

Double-click the EuroNCAP folder, and then choose a Euro NCAP scenario from one of
these subfolders.

* “Automatic Emergency Braking” on page 4-40

+ “Emergency Lane Keeping” on page 4-46

* “Lane Keep Assist” on page 4-50

Automatic Emergency Braking

These scenarios are designed to test automatic emergency braking (AEB) systems. AEB
systems warn drivers of impending collisions and automatically apply brakes to prevent
collisions or reduce the impact of collisions. Some AEB systems prepare the vehicle and
restraint systems for impact.

The table lists a subset of the available AEB scenarios. Other AEB scenarios in the folder
vary the points of collision, the amount of overlap between vehicles, and the initial gap
between vehicles.
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File Name

Description

AEB Bicyclist Longitudinal 25widt
h.mat

The ego car collides with the bicyclist that

is in front of it. Before the collision, the

bicyclist and ego car are traveling in the
same direction along the longitudinal axis.
At collision time, the bicycle is 25% of the

way across the width of the ego car.
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File Name

Description

AEB CCRb 2 initialGap 12m.mat

A car-to-car rear braking (CCRb) scenario,
where the ego car rear-ends a braking
vehicle. The braking vehicle begins to
decelerate at 2 m/s?. The initial gap
between the ego car and the braking
vehicle is 12 m.
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File Name

Description

AEB CCRm_50overlap.mat

A car-to-car rear moving (CCRm) scenario,
where the ego car rear-ends a moving
vehicle. At collision time, the ego car
overlaps with 50% of the width of the
moving vehicle.
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File Name

Description

AEB CCRs_ -75overlap.mat

A car-to-car rear stationary (CCRs)
scenario, where the ego car rear-ends a
stationary vehicle. At collision time, the ego
car overlaps with -75% of the width of the
stationary vehicle. When the ego car is to
the left of the other vehicle, the percent
overlap is negative.




Generate Synthetic Detections from a Euro NCAP Scenario

File Name

Description

AEB Pedestrian Farside 50width.ma
t

The ego car collides with a pedestrian who
is traveling from the left side of the road,
which Euro NCAP test protocols refer to as
the far side. These protocols assume that
vehicles travel on the right side of the road.
Therefore, the left side of the road is the
side farthest from the ego car. At collision
time, the pedestrian is 50% of the way
across the width of the ego car.
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File Name

Description

AEB PedestrianChild Nearside 50wi
dth.mat

The ego car collides with a pedestrian who
is traveling from the right side of the road,
which Euro NCAP test protocols refer to as
the near side. These protocols assume that
vehicles travel on the right side of the road.
Therefore, the right side of the road is the
side nearest to the ego car. At collision
time, the pedestrian is 50% of the way
across the width of the ego car.

Emergency Lane Keeping

These scenarios are designed to test emergency lane keeping (ELK) systems. ELK
systems prevent collisions by warning drivers of impending, unintentional lane

departures.
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The table lists a subset of the available ELK scenarios. Other ELK scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.

File Name Description

ELK FasterOvertakingVeh Intent V1 |The ego car intentionally changes lanes and
at 0.5.mat collides with a faster, overtaking vehicle
that is in the other lane. The ego car travels
at a lateral velocity of 0.5 m/s.
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File Name

Description

ELK OncomingVeh Vlat 0.3.mat

The ego car unintentionally changes lanes
and collides with an oncoming vehicle that
is in the other lane. The ego car travels at a
lateral velocity of 0.3 m/s.
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File Name

Description

ELK OvertakingVeh Unintent Vlat 0

.3.mat

The ego car unintentionally changes lanes,
overtakes a vehicle in the other lane, and
collides with that vehicle. The ego car
travels at a lateral velocity of 0.3 m/s.
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File Name Description

ELK RoadEdge NoBndry Vlat 0.2.mat |The ego car unintentionally changes lanes
and ends up on the road edge. The road
edge has no lane boundary markings. The
ego car travels at a lateral velocity of 0.2
m/s.

Lane Keep Assist

These scenarios are designed to test lane keep assist (LKA) systems. LKA systems detect
unintentional lane departures and automatically adjust the steering angle of the vehicle to
stay within the lane boundaries.

The table lists a subset of the available LKA scenarios. Other LKA scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.
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File Name

Description

LKA DashedLine Solid Left Vlat 0.
5.mat

The ego car unintentionally departs from a
lane that is dashed on the left and solid on
the right. The car departs the lane from the
left (dashed) side, traveling at a lateral
velocity of 0.5 m/s.
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File Name Description
LKA DashedLine Unmarked Right Vla |The ego car unintentionally departs from a
t 0.5.mat lane that is dashed on the right and

unmarked on the left. The car departs the
lane from the right (dashed) side, traveling
at a lateral velocity of 0.5 m/s.
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File Name Description

LKA RoadEdge NoBndry Vlat 0.5.mat |The ego car unintentionally departs from a
lane and ends up on the road edge. The
road edge has no lane boundary markings.
The car travels at a lateral velocity of 0.5
m/s.
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File Name Description
LKA RoadEdge NoMarkings Vlat 0.5. |The ego car unintentionally departs from a
mat lane and ends up on the road edge. The

road has no lane markings. The car travels
at a lateral velocity of 0.5 m/s.
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File Name

Description

LKA SolidLine Dashed Left Vlat 0.
5.mat

The ego car unintentionally departs from a
lane that is solid on the left and dashed on
the right. The car departs the lane from the
left (solid) side, traveling at a lateral
velocity of 0.5 m/s.

4-55



4 Driving Scenario Generation and Sensor Models

4-56

File Name Description

LKA SolidLine Unmarked Right Vlat |The ego car unintentionally departs from a
_0.5.mat lane that is a solid on the right and
unmarked on the left. The car departs the
lane from the right (solid) side, traveling at
a lateral velocity of 0.5 m/s.

Modify Scenario

By default, in Euro NCAP scenarios, the ego car does not contain sensors. If you are
testing a vehicle sensor, from the app toolstrip, click Add Camera or Add Radar to add a
sensor to the ego car. Then, on the Sensor tab, adjust the parameters of the sensors to
match your sensor model. If you are testing a camera sensor, to enable the camera to
detect lanes, expand the Detection Parameters section, and set Detection Type to
Lanes & Objects.

You can also adjust the parameters of the roads and actors in the scenario. For example,
from the Actors tab on the left, you can change the position or velocity of the ego car or
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other actors. From the Roads tab, you can change the width of lanes or the type of lane

markings.

Generate Synthetic Detections

To generate detections from any added sensors, click Run. As the scenario runs, the Ego-
Centric View displays the scenario from the perspective of the ego car. The Bird’s-Eye

Plot displays the detections.

Export the detections.

» To export the detections to the MATLAB workspace, from the app toolstrip, click
Export > Export Sensor Data. Name the workspace variable and click OK.

* To export a MATLAB function that generates the scenario and its detections, click
Export > Export MATLAB Function. The scenario is a drivingScenario object.
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The sensor detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the
scenario, you can update the code in the exported function directly. To generate new
detections, call the exported function.

Save Scenario

Because Euro NCAP scenarios are read-only, save a copy of the driving scenario to a new
folder. From the app toolstrip, select Save > Session As to save the app session to a
MAT-file.

You can reopen this session from within the app or by using the following syntax at the
MATLAB command prompt:

drivingScenarioDesigner(sessionFileName)

You can modify one or more scenario parameters and save multiple variations of the same
scenario. For example, you can adjust the velocity of the ego vehicle or the type of lane
markings on the road. Then you can save an altered version of the scenario.

You can now use the scenario and generated detections to test your driving algorithms.
For an example, see “Automatic Emergency Braking with Sensor Fusion”.
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System Objects
radarDetectionGenerator | visionDetectionGenerator

More About
. “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
. “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18

. “Automatic Emergency Braking with Sensor Fusion”
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OpenDRIVE [1] is an open file format that enables you to specify large and complex road
networks. Using the Driving Scenario Designer app, you can import roads and lanes
from an OpenDRIVE file into a driving scenario. You can then add actors and sensors to
the scenario and generate synthetic lane and object detections for testing your driving
algorithms.

To import OpenDRIVE roads and lanes into a drivingScenario object instead of into
the app, use the roadNetwork method.

Import OpenDRIVE File

To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

To import an OpenDRIVE file, from the app toolstrip, select Open > OpenDRIVE Road
Network. The file you select must be a valid OpenDRIVE file of type .xodr or .xml. In
addition, the file must conform with OpenDRIVE format specification version 1.4H.

From your MATLAB root folder, navigate to and open this file:
matlabroot/toolbox/driving/drivingdata/intersection.xodr

Because you cannot import an OpenDRIVE road network into an existing app session, the
app prompts you to save your current app session.

The Scenario Canvas of the app displays the imported road network.
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The roads in this network are thousands of meters long. You can zoom in (press Ctrl
+Plus) on the road to inspect it more closely.

Inspect Roads

The imported road network is an intersection of a two-lane undivided highway and a two-
lane by two-lane divided highway.
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Verify that the road network imported as expected, keeping in mind the following
limitations and behaviors within the app.

OpenDRIVE Import Limitations

The Driving Scenario Designer app does not support all components of the OpenDRIVE
specification.

* You can import only lanes and roads. The import of road objects and traffic signals is
not supported.

* OpenDRIVE files containing large road networks can take up to several minutes to
load. In addition, these road networks can cause slow interactions on the app canvas.
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Examples of large road networks include ones that model the roads of a city or ones
with roads that are thousands of meters long.

* Lanes with variable widths are not supported. The width is set to the highest width
found within that lane. For example, if a lane has a width that varies from 2 meters to
4 meters, the app sets the lane width to 4 meters throughout.

* Roads with multiple lane marking styles are not supported. The app applies the first
found marking style to all lanes in the road. For example, if a road has Dashed and
Solid lane markings, the app applies Dashed lane markings throughout.

* Lane marking styles Bott Dots, Curbs, and Grass are not supported. If imported
roads have these lane marking styles, the app sets their lane markings to the default
style, as determined by the number of lanes in the road.

Road Orientation

In the Driving Scenario Designer app, the orientation of roads can differ from the
orientation of roads in other tools that display OpenDRIVE roads. The table shows this
difference in orientation between the app and the OpenDRIVE ODR Viewer.
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Driving Scenario Designer OpenDRIVE ODR Viewer

In the OpenDRIVE ODR viewer, the X-axis runs along the bottom of the viewer, and the Y-
axis runs along the left side of the viewer.

In the Driving Scenario Designer app, the Y-axis runs along the bottom of the canvas,
and the X-axis runs along the left side of the canvas. This world coordinate system in the
app aligns with the vehicle coordinate system (Xy,Yy) used by vehicles in the driving
scenario, where:

* The X-axis (longitudinal axis) points forward from a vehicle in the scenario.
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» The Yy-axis (lateral axis) points to the left of the vehicle, as viewed when facing
forward.
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For more details about the coordinate systems, see “Coordinate Systems in Automated
Driving System Toolbox” on page 1-2.
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Road Centers on Edges

In the Driving Scenario Designer app, the location and orientation of roads are defined
by road centers. When you create a road in the app, the road centers are always in the
middle of the road. When you import OpenDRIVE road networks into the app, however,
some roads have their road centers on the road edges. This behavior occurs when the
OpenDRIVE roads are explicitly specified as being right lanes or left lanes.

Consider the divided highway in the imported OpenDRIVE file.

The lanes on the right side of the highway have their road centers on the right edge.
The lanes on the left side of the highway have their road centers on the left edge.

@]
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Add Actors and Sensors to Scenario

You can add actors and sensors to a scenario containing OpenDRIVE roads. However, you
cannot add other roads to the scenario. If a scenario contains an OpenDRIVE road
network, the Add Road button in the app toolstrip is disabled. In addition, you cannot
import additional OpenDRIVE road networks into a scenario.

Add an ego car to the scenario by right-clicking one of the roads in the canvas and
selecting Add Car. To specify the trajectory of the car, right-click the car in the canvas,
select Add Waypoints, and add waypoints along the road for the car to pass through.
After you add the last waypoint along the road, press Enter. The car autorotates in the
direction of the first waypoint.
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Add a camera sensor to the ego car. From the app toolstrip, click Add Camera. Then, on
the sensor canvas, add the camera to the predefined location representing the front
window of the car.

Configure the camera to detect lanes. In the left pane, on the Sensors tab, expand the
Detection Parameters section. Then, set the Detection Type parameter to Lanes.

Generate Synthetic Detections

To generate lane detections from the camera, from the app toolstrip, click Run. As the
scenario runs, the Ego-Centric View displays the scenario from the perspective of the
ego car. The Bird’s-Eye Plot displays the left-lane and right-lane boundaries of the ego
car.
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To export the detections to the MATLAB workspace, from the app toolstrip, click Export
> Export Sensor Data. Name the workspace variable and click OK.

The Export > Export MATLAB Function option is disabled. If a scenario contains
OpenDRIVE roads, then you cannot export a MATLAB function that generates the
scenario and its detections.

Save Session

After you generate the detections, click Save to save the app session to a MATfile. In
addition, you can save the sensor models separately. You can also save the road and actor
models into a separate file.

You can reopen this session from within the app or by using this syntax at the MATLAB
command prompt:
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drivingScenarioDesigner(sessionFileName)

When you reopen this session, the Add Road button remains disabled.

References

[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H,
Document No. VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie
GmbH, November 4, 2015.

See Also

Apps
Driving Scenario Designer

Classes
drivingScenario

Functions
roadNetwork

More About

. “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
. “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18
. “Coordinate Systems in Automated Driving System Toolbox” on page 1-2

See Also

External Websites
. opendrive.org


http://opendrive.org/

